Outdoor Sound Source Detection Using a Quadcopter with Microphone Array

Author:

Ohata Takuma, ,Nakamura Keisuke,Nagamine Akihide,Mizumoto Takeshi,Ishizaki Takayuki,Kojima Ryosuke,Sugiyama Osamu,Nakadai Kazuhiro,

Abstract

[abstFig src='/00290001/17.jpg' width='300' text='System architecture for sound source detection using a quadcopter with a microphone array' ] This paper addresses sound source detection in an outdoor environment using a quadcopter with a microphone array. As the previously reported method has a high computational cost, we proposed a sound source detection algorithm called multiple signal classification based on incremental generalized singular value decomposition (iGSVD-MUSIC) that detects the sound source location and temporal activity at low computational cost. In addition, to relax the estimation error problem of a noise correlation matrix that is used in iGSVD-MUSIC, we proposed correlation matrix scaling (CMS) to achieve soft whitening of noise. As CMS requires a parameter to decide the degree of whitening, we analyzed the optimal value of the parameter by using numerical simulation. The prototype system based on the proposed methods was evaluated with two types of microphone arrays in an outdoor environment. The experimental results showed that the proposed iGSVD-MUSIC-CMS significantly improves sound source detection performance, and the prototype system achieves real-time processing. Moreover, we successfully clarified the behavior of the CMS parameter by using a numerical simulation in which the empirically-obtained optimal value corresponded with the analytical result.**This work is an extension of our publication “Takuma Ohata et al.: Improvement in outdoor sound source detection using a quadrotor-embedded microphone array, IROS 2014, pp.1902-1907, 2014.”

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clock time independent distance measurement between smartphones using audible PRBS;2022 33rd Irish Signals and Systems Conference (ISSC);2022-06-09

2. A Review on Auditory Perception for Unmanned Aerial Vehicles;Sensors;2020-12-18

3. Sound event aware environmental sound segmentation with Mask U-Net;Advanced Robotics;2020-10-05

4. Robot Audition and Computational Auditory Scene Analysis;Advanced Intelligent Systems;2020-07-08

5. Sound Source Localization Based on von-Mises-Bernoulli Deep Neural Network;2020 IEEE/SICE International Symposium on System Integration (SII);2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3