Author:
Suzuki Soichiro, ,Takada Masamichi,Iwakura Yuta,
Abstract
This study proposes a new control that stabilizes a three-dimensional (3D) passive walker without torque input at knees and ankles joints by using entrainment and a mechanical oscillator. It is difficult to stabilize a 3D biped passive walker in different environments because the range of initial conditions for stable walking is limited, so we designed a 3D biped passive walker as a passive walking platform by considering the results of human gait analysis to make the success of passive walking high. The stability of this platform was analytically determined by analyzing the frontal movement limit cycle. In the new control, the frontalmovement period is synchronized with the swing-leg period by a mechanical oscillator on the top of the walker. The mechanical oscillator controller generates a target path to synchronize oscillatormovement with swing-leg movement using frequency entrainment. The walker is stabilized when the frontal movement period was synchronized with the swing-leg period by periodic input generated by the mechanical oscillator. It was experimentally found consequently that the walker was stabilized on different slopes and flat floors.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference13 articles.
1. A. Goswami, B. Espiau, and A. Keramane, “Limit Cycles in a Passive Compass Gait Biped and Passivity-Mimicking Control Laws,” J. of Autonomous Robot, Vol.4, No.3, pp. 273-286, 1997.
2. M. Garcia, A. Chatterjee, and A. Ruina, “Efficiency, Speed and Scaling of Two-Dimensional Passive-Dynamic Walking,” Dynamics and Stability of Systems, Vol.15, No.2, pp. 75-99, 2000.
3. K. Osuka, “Passive Dynamic Walking as base of Walking Mechanics,” Systems, control and information, Vol.4, No.10, pp. 393-398, 2005.
4. Y. Ikemata, A. Sano, and H. Fujimoto, “Generation and Local Stabilization of Fixed Point Based on a Stability Mechanism of Passive Walking,” J. of the Robotics Society of Japan, Vol.24, No.5, pp. 632-639, 2006.
5. F. Asano and Z. Luo, “Underactuated virtual passive dynamic walking using rolling effect of semicircular feet (1) on driving mechanisms of compass-like models,” J. of the Robotics Society of Japan, Vol.25, No.4, pp. 556-577, 2007.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献