Low-Cost Design Solutions for Educational Robots
-
Published:2018-10-20
Issue:5
Volume:30
Page:827-834
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Tiboni Monica,Aggogeri Francesco,Bussola Roberto,Borboni Alberto,Perani Cesare Augusto,Pellegrini Nicola, ,
Abstract
Low-cost robotics, fully integrated in the corporate IT infrastructure, is a requirement in the era of modern industrial automation derived from the Industry 4.0 model. This paper presents a multidisciplinary robotics-based learning (R-BL) project consisting of the development of a modular control architecture and a gripper for small manipulators. The solution, as compared with options available in the current robotic market, is a balance between low-cost devices with industrial robot performance. The project is carried out as part of the Robotics and Mechanisms program, a course in the automation engineering degree program at the University of Brescia in Italy. A 4-axis small-size robot, able to manipulate many kinds of objects, was designed and built by a student team by integrating the controller and the gripper. The controller was implemented using a real-time Raspberry platform by following a modular design concept. The control software is characterized by a short development time. The gripper was advanced to achieve low cost and modularity tradeoffs.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference64 articles.
1. Z. M. Bi and W. J. Zhang, “Modularity Technology in Manufacturing: Taxonomy and Issues,” Int. J. Adv. Manuf. Technology, Vol.18, pp. 381-390, 2001. 2. B. Gombert, G. Hirzinger, G. Plank, and M. Schedl, “Modular concepts for a new generation of light weight robots,” Industrial Electronics, Control & Instrumentation, Vol.3, pp. 1507-1514, 1994. 3. R. Kolluru, K. P. Valavanis, N. Tsourveloudis, and S. Smith, “Design Fundamentals of a Reconfigurable Robotic Gripper System,” IEEE Trans. on System, Man and Cybernetics, Vol.30, No.2, Part A, pp. 181-187, 2000. 4. S. Cinquemani, H. Giberti, and G. Legnani, “Kinematic Optimization of a 2DoF PRRRP Manipulator,” Advances in Italian Mechanism Science, Mechanisms and Machine Science, Vol.47, Springer, 2017. 5. M. Serpelloni, M. Tiboni, M. Lancini, S. Pasinetti, A. Vertuan, and M. Gobbo, “Preliminary study of a robotic rehabilitation system driven by EMG for hand mirroring,” Proc. of IEEE Int. Symp. on Medical Measurements and Applications, MeMeA 2016, No.7533730, 2016.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|