Development of Lifting System for High-Elevation Inspection Robot Targeting Hanger Ropes

Author:

Fujihira Yoshinori, ,Hanajima Naohiko,Kurashige Kentarou,Kajiwara Hidekazu,Mizukami Masato

Abstract

In this paper, we show the development of a lifting system and frame body for an inspection robot targeting hanger ropes of a suspension bridge. Infrastructure now requires regular inspection and such robots are expected to be used in places where manual inspection is difficult. The problems associated with the lifting system for the hanger-rope inspection robot studied in this paper include a long lifting distance (up to 100 m), postural stability against the influence of wind, and risk of falling. To solve these problems, we propose a lifting system with an alternating rotation mechanism, which takes advantage of the lifting mechanism of a climbing doll. In this paper, we explain the design and control methods of the lifting mechanism and alternating rotation hoist to realize the proposed lifting system. For the moving frame body, we designed and made a mechanism and frame structure to maintain stability of its posture. Performing an operation test in our laboratory and in the field with the proposed system incorporated into an actual unit, we checked the action of the proposed mechanism. In particular, we could confirm in the field test that the postural stability necessary for shooting inspection images could be ensured in an environment with wind speed of 5 m/s and that ascending and descending motions could be successfully performed with the current output of the alternating rotation hoist, even in an environment with a mean wind speed of 10 m/s.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based corrosion inspection of long-span bridges with BIM integration;Heliyon;2024-08

2. Multi-purpose Dual Wire Rope Auto Balancing Climber;2024 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO);2024-05-20

3. Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review;Biomimetics;2023-01-22

4. Groove Profile Design and Durability Analysis of Sheave for Robotic Wire Climber System;2021 IEEE International Conference on Robotics and Biomimetics (ROBIO);2021-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3