Abstract
[abstFig src='/00280005/11.jpg' width='300' text='ANMPC controller' ] The parameter-tuning method we discuss is for an Adaptive Nonlinear Model Predictive Controller (ANMPC). The MPC is optimization-based controller and decides control input to realize system output that tracks a reference trajectory through “optimal computation.” The reference trajectory is ideal trajectory of system output to converge on a desired value, i.e. controlled system performance depends on the reference trajectory. As a MPC controller which applies to the nonlinear systems, our group has already proposed an adaptive nonlinear MPC (ANMPC) for a tracking control problem of nonlinear two-link planar manipulators. This ANMPC uses a new reference trajectory having control parameters that must be tuned based on the desired controlled system’s responses and properties. To reduce troublesome parameter tuning, we propose new parameter-tuning method for ANMPC by a quantitative analysis of the relationship between a system’s behavior and ANMPC parameters. Numerically simulating the two-link nonlinear manipulator’s tracking control under various conditions demonstrates that proposed tuning method tunes the ANMPC effectively.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference12 articles.
1. J. K. Maciejowski, “Predictive Control with Constraints,” Prentice Hall, New Jersey, 2002.
2. W. H. Kwon and A. E. Pearson, “On Feedback Stabilization of Time-Varying Discrete Linear Systems,” IEEE Trans. Autom. Control, Vol.23, pp. 479-481, 1978.
3. V. H. L. Cheng, “A Direct Way to Stabilize Continuous-Time and Discrete-Time Linear Time-Varying Systems,” IEEE Trans. Autom. Control, Vol.24, pp. 641-643, 1979.
4. C. C. Chen and L. Shaw, “On Receding Horizon Feedback Control,” Automatica, Vol.18, pp. 349-352, 1982.
5. T. Henmi, T. Ohta, M. Deng, and A. Inoue, “Tracking Control of The Two-link Manipulator using Nonlinear Model Predictive Control,” Proc. of IEEE Int. Conf. on Networking, Sensing and Control, pp. 761-766, 2009.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献