Psychologically-Inspired Audio-Visual Speech Recognition Using Coarse Speech Recognition and Missing Feature Theory

Author:

Nakadai Kazuhiro, ,Koiwa Tomoaki,

Abstract

[abstFig src='/00290001/10.jpg' width='300' text='System architecture of AVSR based on missing feature theory and P-V grouping' ] Audio-visual speech recognition (AVSR) is a promising approach to improving the noise robustness of speech recognition in the real world. For AVSR, the auditory and visual units are the phoneme and viseme, respectively. However, these are often misclassified in the real world because of noisy input. To solve this problem, we propose two psychologically-inspired approaches. One is audio-visual integration based on missing feature theory (MFT) to cope with missing or unreliable audio and visual features for recognition. The other is phoneme and viseme grouping based on coarse-to-fine recognition. Preliminary experiments show that these two approaches are effective for audio-visual speech recognition. Integration based on MFT with an appropriate weight improves the recognition performance by −5 dB. This is the case even in a noisy environment, in which most speech recognition systems do not work properly. Phoneme and viseme grouping further improved the AVSR performance, particularly at a low signal-to-noise ratio.**This work is an extension of our publication “Tomoaki Koiwa et al.: Coarse speech recognition by audio-visual integration based on missing feature theory, IROS 2007, pp.1751-1756, 2007.”

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference32 articles.

1. K. Nakadai, D. Matsuura, H. G. Okuno, and H. Tsujino, “Improvement of recognition of simultaneous speech signals using AV integration and scattering theory for humanoid robots,” Speech Communication, Vol.44, pp. 97-112, 2004.

2. C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models,” Computer Speech and Language, Vol.9, No.171-185, 1995.

3. K. Nakadai, T. Lourens, H. G. Okuno, and H. Kitano, “Active audition for humanoid,” Proc. of 17th National Conf. on Artificial Intelligence (AAAI-2000), pp. 832-839, 2000.

4. S. Yamamoto, K. Nakadai, M. Nakano, H. Tsujino, J.-M. Valin, K. Komatani, T. Ogata, and H. G. Okuno, “Real-time robot audition system that recognizes simultaneous speech in the real world,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2006), pp. 5333-5338, 2006.

5. I. Hara, F. Asano, H. Asoh, J. Ogata, N. Ichimura, Y. Kawai, F. Kanehiro, H. Hirukawa, and K. Yamamoo, “Robust speech interface based on audio and video information fusion for humanoid HRP-2,” Proc. of IEEE/RAS Int. Conf. on Intelligent Robots and Systems (IROS-2004), pp. 2404-2410, 2004.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3