Abstract
This paper describes the development of a communication robot for STEM education, in which digital fabrication equipment such as a 3D printer and laser cutter are used. Specifically, although STEM education programs are active in several countries outside of Japan, they are not yet officially adopted in the curricula for Japanese elementary and junior high schools; however, a few undertakings exist outside schools. Meanwhile, the new curriculum guidelines announced in March 2017 by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) recognize the need for cross-subject activities and require elementary schools to introduce education on programmatic thinking. This suggests that STEM education-related activities will be introduced in Japanese school education in the near future and that educational programs that utilize robots will become increasingly active. Furthermore, the availability of technologies, such as speech recognition, artificial intelligence, and IoT, makes it highly likely that communication robots will be adopted in a variety of school situations. This study reviews the author’s development of a communication robot based on the use of digital fabrication technology within the context of STEM education; teaching plans are proposed, premised on the use of the STEM robot within the framework of the new curriculum guidelines that will be adopted by elementary and junior high schools in Japan from FY2020.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference16 articles.
1. J. Vasquez, C. Sneider, and M. Corner, “STEM Lesson,” Heineman, 2013.
2. A. Jolly, “STEM BY DESIGN,” Routledge, 2017.
3. K. Kawada, M. Nagamatsu, and T. Yamamoto, “An approach to rescue robot workshop for kindergarten and primary school children,” J. of Robotics and Mechatronics, Vol.25, No.3, pp. 521-528, 2013.
4. H. Muramatsu, Y. Tsuchida, and T. Inagaki, “Development of a junior-patent database system for junior high school robot contest,” J.of the Japan Society of Technology education, Vol.47, No.4, pp. 281-287, 2015 (in Japanese).
5. K. Kadota, “Curriculum development of robot education at high school of science and technology,” J. of the Robotics Society in Japan, Vol.31, No.2, pp. 133-139, 2013 (in Japanese).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献