Development of a Bridge Inspection Support System Using Two-Wheeled Multicopter and 3D Modeling Technology

Author:

Hada Yoshiro, ,Nakao Manabu,Yamada Moyuru,Kobayashi Hiroki,Sawasaki Naoyuki,Yokoji Katsunori,Kanai Satoshi,Tanaka Fumiki,Date Hiroaki,Pathak Sarthak,Yamashita Atsushi,Yamada Manabu,Sugawara Toshiya, , , ,

Abstract

Recently, many countries have faced serious problems associated with aging civil infrastructures such as bridges, tunnels, dams, highways and so on. Aging infrastructures are increasing year by year and suitable maintenance actions are necessary to maintain their safety and serviceability. In fact, infrastructure deterioration has caused serious problems in the past. In order to prevent accidents with civil infrastructures, supervisors must spend a lot of money to maintain the safe conditions of infrastructures. Therefore, new technologies are required to reduce maintenance costs. In 2014 the Japanese government started the Cross-Ministerial Strategic Innovation Promotion Program (SIP), and technologies for infrastructure maintenance have been studied in the SIP project [1]. Fujitsu Limited, Hokkaido University, The University of Tokyo, Nagoya Institute of Technology and Docon Co. Limited have been engaged in the SIP project to develop a bridge inspection support system using information technology and robotic technology. Our system is divided into the following two main parts: bridge inspection support robots using a two-wheeled multicopter, and an inspection data management system utilizing 3D modeling technology. In this paper, we report the bridge inspection support system developed in our SIP project.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference15 articles.

1. Y. Fujino, “The Cross-ministerial Strategic Innovation Promotion Program, Infrastructure Maintenance, Renovation, and Management,” Cabinet office, Government of Japan, http://www8.cao.go.jp/cstp/panhu/sip_english/34-37.pdf [accessed May 8, 2017]

2. M. Nakao, Y. Hada et al., “Development of a bridge inspection support robot system that uses a two-wheeled quiad-rotor helicopter,” Proc. of The Fourteenth East Asia-Pacific Conf. on Structural Engineering and Construction (EASEC-14), S3.460, 2016.

3. N. Takahashi, M. Yamada et al., “All-round two-wheeled quadrotor helicopters with protect-frames for air-land-sea vehicle,” Advanced Robotics, Vol.29, No.1, pp. 69-87, 2015.

4. “The Aerial Robotic Infrastructure Analyst (ARIA) Project,” Carnegie Mellon University, http://aria.ri.cmu.edu/ [accessed May 8, 2017]

5. S. Pathak, A. Moro, A. Yamashita and H. Asama, “3D Reconstruction of Structures using Spherical Camera with Small Motion,” Proc. of 16thInt. Conf. on Control, Automation and Systems (ICCAS 2016), 2016.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3