Radar Echo Population of Air-Mass Thunderstorms and Nowcasting of Thunderstorm-Induced Local Heavy Rainfalls Part II: A Feasibility Study on Nowcasting

Author:

Ishihara Masahito,

Abstract

Many air-mass thunderstorms were generated in the Tokyo metropolitan area on August 5, 2008, when a severe local rainstorm caused a flash flood in the center of Tokyo. Using three-dimensional radar reflectivity data from the Japan Meteorological Agency (JMA), nowcasting was examined concerning the peak time and peak rainfall intensity of thunderstorms. Four qualitative forecastmethods – precipitation cores aloft, time changes in vertically integrated liquid water, time changes in echo-top height, lightning activity – and three quantitative forecast methods using three parameters were adopted in eight thunderstorms related to heavy-rainfall warnings issued by the JMA on August 5, 2008. While there is much worth further examination in the method using precipitation core aloft, the other methods are not in the stage of operational use in order to forecast time and rainfall intensity at the rainfall peak of each thunderstorm.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference41 articles.

1. M. Ishihara, “Radar echo population of air-mass thunderstorms and nowcasting of thunderstorm-induced local heavy rainfalls Part 1: statistical characteristics,” J. Disaster Research, Vol.8, No.1, pp. 57-68, 2013 (this number).

2. A. Okubo, N. Mashiko, N. Sakamaki, M. Nishi, E. Nagata, and T. Takami, “Prediction of convective rain at warm phase in Tokyo area based on the strong rain scenario – Improvement for securing at the “lead time” in issuing warnings and advisories for heavy rain,” J. Meteor. Research, Japan Meteorological Agency, Vol.59, pp. 41-55, 2007 (in Japanese).

3. Y. Makihara, “Steps towards decreasing heavy rain disaster by short-range precipitation and land-slide forecast using weather radar accompanied by improvement of meteorological operational activities,” Tenki, Vol.54, pp. 21-33, 2007 (in Japanese).

4. I. Sugiura, M. Kunitsugu, Y. Tsujimura, and T. Makihara, “Outline on the JMAprecipitation nowcasting system,” 2005 Spring Meeting of the Meteorological Society of Japan, C463, pp. 208, 2005.

5. V. Lakshmanan, T. Smith, G. Stumpf, and K. Hondl, “The warning decision support system Integrated information,” Wea. Forecasting, Vol.22, pp. 596-612, 2007.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3