Author:
P. C. Shakti, ,Nakatani Tsuyoshi,Misumi Ryohei
Abstract
The heavy rainfall event that occurred on 5–6 July 2017 in Northern Kyushu, Japan, caused extensive flooding across several mountainous river basins and resulted in fatalities and extensive damage to infrastructure along those rivers. For the periods before and during the extreme event, there are no hydrological observations for many of the flooded river basins, most of which are small and located in mountainous regions. We used the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, a physically based model, to acquire more detailed information about the hydrological processes in the flood-affected ungauged mountain basins. We calibrated the GSSHA model using data from an adjacent gauged river basin, and then applied it to several small ungauged basins without changing the parameters of the model. We simulated the gridded flow and generated a map of the possible maximum flood depth across the basins. By comparing the extent of flood-affected areas from the model with data of the Japanese Geospatial Information Authority (GSI), we found that the maximum flood inundation areas of the river networks estimated by the GSSHA model are sometimes less than those estimated by the GSI, as the influence of landslides and erosion was not considered in the modeling. The model accuracy could be improved by taking these factors into account, although this task would be challenging. The results indicated that simulations of flood inundation in ungauged mountain river basins could contribute to disaster management during extreme rain events.
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference34 articles.
1. Y. Kwak and and Y. Iwami, “Rapid global exposure assessment for extreme river flood risk under climate change,” J. Disaster Res., Vol.11, No.6, pp. 1128-1136, 2016.
2. M. Nakamura, S. Kanada, Y. Wakazuki, C. Muroi, A. Hashimoto, T. Kato, A. Noda, M. Yoshizaki, and K. Yasunaga, “Effects of global warming on heavy rainfall during the Baiu season projected by a cloud-system-resolving model,” J. Disaster Res., Vol.3, No.1, pp. 15-24, 2008.
3. F. Fujibe, N. Yamazaki, and K. Kobayashi, “Long-term changes of heavy precipitation and dry weather in Japan (1901-2004),” J. Meteor. Soc. Japan, Vol.84, No.6, pp. 1033-1046, 2006.
4. S. Kusunoki, J. Yoshimura, H. Yoshimura, R. Mizuta, K. Oouchi, and A. Noda, “Global Warming Projection by an Atmospheric Global Model with 20-km Grid,” J. Disaster Res., Vol.3, pp. 4-14, 2008.
5. IPCC, “Summary for policy makers, Climate Change 2014: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, pp. 1-32, 2014.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献