Rapid Global Exposure Assessment for Extreme River Flood Risk Under Climate Change

Author:

Kwak Youngjoo, ,Iwami Yoichi,

Abstract

Globally, large-scale floods are one of the most serious disasters, considering increased frequency and intensity of heavy rainfall. This is not only a domestic problem but also an international water issue related to transboundary rivers in terms of global river flood risk assessment. The purpose of this study is to propose a rapid flood hazard model as a methodological possibility to be used on a global scale, which uses flood inundation depth and works reasonably despite low data availability. The method is designed to effectively simplify complexities involving hydrological and topographical variables in a flood risk-prone area when applied in an integrated global flood risk assessment framework. The model was used to evaluate flood hazard and exposure through pixel-based comparison in the case of extreme flood events caused by an annual maximum daily river discharge of 1/50 probability of occurrence under the condition of climate change between two periods, Present (daily data from 1980 to 2004) and Future (daily data from 2075 to 2099). As preliminary results, the maximum potential extent of inundation area and the maximum number of affected people show an upward trend in Present and Future.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference40 articles.

1. United Nations Office for Disaster Risk Reduction (UNISDR), “Living with Risk: A Global Review of Disaster Reduction,” UNISDR: New York, NY, USA; Geneva, Switzerland, 2004.

2. P. Bates, M. Horritt, and T. Fewtrell, “A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling,” Hydro., Vol.387, pp. 33-45, 2010.

3. A. Sanghi, S. Ramachandran, A. Fuente, M. Tonizzo, S. Sahin, and B. Adam, “Natural hazards, unnatural disasters : the economics of effective prevention,” Washington DC, World Bank Group, 2011.

4. IPCC’s Fifth Assessment Report (AR5), “Climate Change 2014 Synthesis Report,” World Meteorological Organization (WMO), Geneva, Switzerland, 2014.

5. United Nations, “Sendai Framework for Disaster Risk Reduction 2015–2030,” United Nations Office for Disaster Risk Reduction (UNISDR), Vol.32 pp. A/CONF.224/L.2, 2015.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3