Author:
Iizuka Yasuki, ,Kinoshita Katsuya,Iizuka Kayo, ,
Abstract
In times of disaster, or other emergency situations, it is essential for people to be evacuated in a smooth manner. Evacuation must be performed promptly and safely. It is necessary to avoid generating a secondary disaster at the time of evacuation. However, this is not easy to realize, because people often tend to panic when faced with disaster, crowding the evacuation passageways of buildings. On the other hand, people do not attempt to evacuate themselves from danger when the normalcy bias has occurred. Therefore, evacuation guidance is very important. However, it is impossible to guide all evacuees through authorities such as disaster countermeasure offices. To deal with this issue, the authors propose a system that provides optimal evacuation guidance autonomously without central server. The system works on the mobile devices of evacuees, performs distributed calculations using the framework of the distributed constraint optimization problem on ad-hoc communication, and does not need a central server. In the experiment using multi-agent simulation, for the case where the evacuees can receive evacuation guidance from this system, the evacuation completion time decreased. This paper presents an overview and the evaluation results of the prototype of the disaster evacuation assistance system.
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference19 articles.
1. Cabinet Office, “Disaster Management In Japan,” Government of Japan, 2011, online available at: http://www.bousai.go.jp/1info/pdf/saigaipanf_e.pdf [accessed July 30, 2015]
2. A. R. Leite, F. Enembreck, and J.-P. A. Barthes, “Distributed constraint optimization problems: Review and perspectives,” Expert Systems with Applications, Vol.41, No.11, pp. 5139–5157, 2014.
3. K. Iizuka, Y. Iizuka, and K. Yoshida, “A real-time disaster situation mapping system for university campuses,” in Online Communities and Social Computing, ser. Lecture Notes in Computer Science, A. Ozok and P. Zaphiris (Eds.), Springer Berlin / Heidelberg, 2011, Vol.6778, pp. 40–49.
4. A. Fujihara and H. Miwa, “Effect of traffic volume in real-time disaster evacuation guidance using opportunistic communications,” in Intelligent Networking and Collaborative Systems (INCoS), 2012 4thInternational Conference on, Sept 2012, pp. 457–462.
5. R. N. Lass, J. B. Kopena, E. A. Sultanik, D. N. Nguyen, C. P. Dugan, P. J. Modi, and W. C. Regli, “Coordination of first responders under communication and resource constraints,” in Proceedings of the 7thinternational joint conference on Autonomous agents and multiagent systems-Volume 3, International Foundation for Autonomous Agents and Multiagent Systems, pp. 1409–1412, 2008.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献