Influence of Evacuation Policy on Clearance Time under Large-Scale Chemical Accident: An Agent-Based Modeling

Author:

Kim Minjun,Cho Gi-HyougORCID

Abstract

Large-scale chemical accidents that occur near areas with large populations can cause significant damage not only to employees in a workplace but also to residents near the accident site. Despite the increasing frequency and severity of chemical accidents, few researchers have argued for the necessity of developing scenarios and simulation models for these accidents. Combining the TRANSIMS (Transportation Analysis and Simulation System) agent-based model with the ALOHA (Areal Location of Hazardous Atmospheres) dispersion model, this study aims to develop a modeling framework for simulating emergency evacuations in response to large-scale chemical accidents. The baseline accident scenario assumed the simultaneous leakage of toxic chemicals from industrial complexes near residential areas. The ALOHA model results showed that approximately 60% of residents in the scenario’s city were required to evacuate their homes. The majority of evacuees completed their evacuations within 5 h in the baseline scenario (evacuating maximum number of private vehicles without any intervention), while the distribution of the population and street network density caused geographical variability in clearance time. Clearance time can be significantly reduced by changing both the evacuees’ behaviors and the evacuation policy, which suggests the necessity for proper public intervention when the mass evacuation of residents is required due to chemical accidents.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3