Hydrological Simulation of Small River Basins in Northern Kyushu, Japan, During the Extreme Rainfall Event of July 5–6, 2017

Author:

P. C. Shakti, ,Nakatani Tsuyoshi,Misumi Ryohei

Abstract

Extreme rainfall and associated flooding are common during the summer in Japan. Heavy rain caused extensive damage in many parts of Kyushu, Japan, on July 5–6, 2017. Many small mountainous river basins were subject to the core of this heavy rainfall event and were flooded, but no hydrological measurements were taken in most of these flooded basins during the event. There are few gauging stations in this mountainous region, and most that do exist are designed to monitor the larger watersheds. Consequently, it is difficult to determine the hydrological properties of the small subbasins within these larger watersheds. Therefore, to improve our understanding of the basic hydrological processes that affect small ungauged mountain river basins during periods of intense rainfall, a quasi-distributed model (i.e. the Hydrologic Engineering Center-Hydrologic Modeling System, HEC-HMS) was used in this study. The Hikosan (area: 65 km2) and Akatani (area: 21 km2) mountainous river basins were selected for the hydrological simulations. The model was validated using the Hikosan River basin because observational data are available from the outlet of this basin. However, there is no record of any hydrological observations for the Akatani River basin. Therefore, reference parameters from the Hikosan River basin were used for hydrological analysis of the Akatani River basin. This was possible because the basins are close to one another and have similar physiographic and topographic properties. The simulations of both basins, and the associated uncertainties, are discussed in detail in this paper. Based on the hydrological simulations, an attempt was made to analyze the maximum flood discharge caused by the event. The results generated using this approach to hydrological simulations in small ungauged basins could contribute to the management of water resources in these and other river basins during future extreme rain events.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference34 articles.

1. S. Kusunoki, J. Yoshimura, H. Yoshimura, R. Mizuta, K. Oouchi, and A. Noda, “Global Warming Projection by an Atmospheric Global Model with 20-km Grid,” J. Disaster Res., Vol.3, pp. 4-14, 2008.

2. IPCC, “Summary for policy makers, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, UK, pp. 1-32, 2014.

3. S. Kreft, D. Eckstein, and I. Melchior, “Global Climate Risk Index 2017. In: Who Suffers Most from Extreme Weather Events? Weather-related Loss Events in 2015 and 1996 to 2015,” Germanwatch e.V., Bonn, pp. 1-32, 2016.

4. S. Kotsuki and K. Tanaka, “Impacts of mid-rainy season rainfall on runoff into the Chao Phraya river, Thailand,” J. Disaster Res., Vol.8, pp. 397-405, 2013.

5. B. B. Shrestha, T. Okazumi, M. Miyamoto, S. Nabesaka, S. Tanaka, and A. Sugiura, “Fundamental analysis for flood risk management in the selected river basins of Southeast Asia,” J. Disaster Res., Vol.8, pp. 858-869, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3