Fundamental Analysis for Flood Risk Management in the Selected River Basins of Southeast Asia

Author:

Shrestha Badri Bhakta, ,Okazumi Toshio,Miyamoto Mamoru,Nabesaka Seishi,Tanaka Shigenobu,Sugiura Ai, , ,

Abstract

Flood features were analyzed and risk knowledge was examined in studies in selected river basins of Southeast Asia. Rainfall runoff features were analyzed in Indonesia’s Solo river basin and in the Philippines’ Pampanga and Cagayan river basins using ground-observed and satellite-based (GSMaP) rainfall data. Flood damage was assessed for risk management by considering physical damage to agricultural and household in the Cambodian flood plain of the Lower Mekong Basin and in the Philippines’s Pampanga river basin. A comparison of simulated and observed runoff hydrographs showed that the accuracy of GSMaP rainfall in the Solo and Cagayan river basins in studied flood events was lower than in the Pampanga river basin case. In the Pampanga and Cagayan river basins, the density of rainfall station networks was below the WMO recommendation, and GSMaP rainfall data would be more effective in getting supplementary information for existing flood-forecasting systems for these river basins. Physical damage to households including residential assets and agricultural damage were estimated quantitatively based on flood features. The estimated value of agricultural and house damage was fairly consistent with reported values. Reliable flood damage data are important for developing flood damage functions and for confirming such estimation. Uncertainties associated with input data, model parameters, and damage information strongly influence the damage estimated. These uncertainties must be considered carefully in flood risk assessment models.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference20 articles.

1. D. Lee, B. Oh, H. Kim, S. Lee, and G. Chung, “Comparision of the hydro-climatological characteristics for the extra-ordinary flood induced by tropical cyclone in the selected river basins,” Tropical Cyclone Research and Review, Vol.2, No.1, pp. 45-54, 2013.

2. B. B. Shrestha, T. Okazumi, S. Tanaka, A. Sugiura, Y. Kwak and S. Hibino, “Development of flood vulnerability indices for Lower Mekong basin in Cambodian floodplain,” Journal of Japan Society of Civil Engineers, Ser B1 (Hydraulic Engineering), Vol.69, No.4, pp. I_1-I_6, 2013.

3. L. Nie, L. A. Roald, S. Mellegard, and C. Maksimovic, “Flood risk management in a cold climate – experience in Norway,” Floods: From Risk to Opportunity, IAHS Publication, No.357, pp. 198-207, 2013.

4. T. Sugiura, K. Fukami, N. Fujiwara, K. Hamaguchi, S. Nakamura, S. Hironaka, K. Nakamura, T. Wada, M. Ishikawa, T. Shimizu, H. Inomata, and K. Ito, “Development of integrated flood analysis system (IFAS) and its applications,” Proceedings of 7thISE & 8thHIC, Chile, 2009.

5. M. Miyamoto, A. Sugiura, T. Okazumi, S. Tanaka, S. Nabesaka, and K. Fukami, “Suggestion for an advanced early warning system based on flood forecasting in Bengawan Solo river basin,” Indonesia, 10th International Conference on Hydroinformatics, IWA IAHR, No.394, July, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3