X-MP Radar for Developing a Lahar Rainfall Threshold for the Merapi Volcano Using a Bayesian Approach
-
Published:2019-08-01
Issue:5
Volume:14
Page:811-828
-
ISSN:1883-8030
-
Container-title:Journal of Disaster Research
-
language:en
-
Short-container-title:J. Disaster Res.
Author:
Hapsari Ratih Indri,Oishi Satoru,Syarifuddin Magfira,Asmara Rosa Andrie,Legono Djoko, , , , ,
Abstract
Lahar flow is recognized as among the worst secondary hazards from volcanic disaster. Intense rainfall with long duration is frequently associated with lahar flow. In this study, estimation of a rainfall threshold likely to trigger lahar flow is presented in the first part. The second part discusses its implementation by assessing the growth of observed and predicted rainfall, including the uncertainties. The study area is Merapi Volcano, one of the most active volcanoes in Indonesia, including rivers on the flank of Mount Merapi that are vulnerable to debris flow. The rainfall indices needed to describe the conditions that generate lahars or not were determined empirically by evaluating the hourly and working rainfall using X-band multiparameter (X-MP) weather radar. Using past records of lahar flow, the threshold lines separating rainfall that triggers lahars or not were analyzed for the Putih, Gendol, Pabelan, and Krasak Rivers. The performance of several critical lines was evaluated using Bayesian probability based on skill rates from a contingency matrix. The study shows that the line intercept of the critical lines after a significant eruption in 2010 was higher than those lines developed before 2010, indicating that the rivers are currently at lesser risk. Good representation was shown by the thresholds verified with actual rainfall progression and lahar event information on February 17, 2016, at the Gendol and Pabelan Rivers. These rainfall critical lines were the basis for judging the debris flow occurrence by analyzing the track record of predicted rainfall progression. The uncertainty of rainfall short-term prediction from the extrapolation model was evaluated by perturbing the advection vector of rain echo motion. This ensemble forecast product could provide a plausible range of prediction possibility as assistance in gaining the confidence with which a lahar could be predicted. The scheme presented herein could serve as a useful tool for a lahar early warning system in the area of the Merapi Volcano.
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference53 articles.
1. F. Lavigne, J.-C. Thouret, D. S. Hadmoko, and C. B. Sukatja, “Lahars in Java: Initiations, Dynamics, Hazard Assessment and Deposition Processes,” Forum Geografi, Vol.21, No.1, pp. 17-32, 2007. 2. L. J. Cobar, D. Legono, and K. Miyamoto, “Modeling of Information Flow for Early Warning in Mount Merapi Area, Indonesia,” J. Disaster Res., Vol.11, No.1, pp. 60-71, 2016. 3. C. L. Shieh, Y. S. Chen, Y. J. Tsai, and J. H. Wu, “Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China,” Int. J. of Sediment Research, Vol.24, No.2, pp. 177-188, 2009. 4. M. T. Brunetti, S. Peruccacci, M. Rossi, S. Luciani, D. Valigi, and F. Guzzetti, “Rainfall thresholds for the possible occurrence of landslides in Italy,” Nat. Hazards Earth Syst. Sci., Vol.10, No.3, pp. 447-458, 2010. 5. Ministry of Land, Infrastructure, Transport and Tourism Japan (MLIT), “Guidelines for development of warning and evacuation system against sediment disasters in developing countries: Planning,” Planning of Warning and Evaculation System, 2004.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|