Dynamic rainfall thresholds for landslide early warning in Progo Catchment, Java, Indonesia

Author:

Satyaningsih Ratna1ORCID,Jetten Victor1,Ettema Janneke1,Sopaheluwakan Ardhasena2,Lombardo Luigi1,Nuryanto Danang Eko2

Affiliation:

1. University of Twente Faculty of Geo-Information Science and Earth Observation: Universiteit Twente Faculteit Geo-Informatie Wetenschappen en Aardobservatie

2. Agency for Meteorology Climatology and Geophysics: Badan Meteorologi Klimatologi dan Geofisika

Abstract

Abstract This study set out to derive empirical rainfall thresholds for landslides in the Progo Catchment, Indonesia, using high-resolution satellite-based precipitation products (SPPs) and rain gauge data. The SPPs are the gauge-adjusted version of the Global Satellite Mapping of Precipitation (GSMaP-GNRT) and the bias-corrected version of the Climate Prediction Center morphing method (CMORPH-CRT). First, we evaluate the detection capacity and accuracy of each SPP. Then we determine rainfall events responsible for landslides by using a dynamic window that allows us to adapt rainfall events by extending or shortening their duration depending on the rainfall signal persistence. Based on 213 landslides that occurred in the Progo Catchment from 2012 to 2021, we derive multiple rainfall thresholds corresponding to various exceedance probability levels. Results indicate that both GSMaP-GNRT and CMORPH-CRT products fail to capture high-intensity rainfall in the Progo Catchment and overestimate light rainfall compared to rain gauge observations. Nevertheless, when accumulated to define the rainfall threshold, the overall performance of GSMaP-GNRT and gauge-based data in Progo Catchment is comparable. Gauge-based data performed slightly better than GSMaP-GNRT, while CMORPH-CRT performed the worst for all exceedance probabilities. By maximising true skill scores, the suitable exceedance probability for early warning purposes in Progo Catchment can be decided, e.g., 10% (15%) if using gauge-based data (GSMaP-GNRT). These findings can be viewed as an attempt to improve the landslide early warning system in Indonesia. Further study is required, using a numerical weather model that reliably forecasts weather systems producing the rainfall events triggering landslides.

Publisher

Research Square Platform LLC

Reference60 articles.

1. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature;Aldrian E;Int J Climatol,2003

2. Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas;Althuwaynee OF;Landslides,2015

3. Remote sensing of orographic precipitation;Barros AP;Adv Glob Chang Res,2020

4. BMKG (2017) Siklon Tropis “CEMPAKA” Lahir, Siaga Cuaca Ekstrem 3 Hari Ke Depan. https://www.bmkg.go.id/berita/?p=siklon-tropis-cempaka-waspadai-hujan-lebat-disertai-angin-kencang-dan-gelombang-tinggi-di-wilayah-selatan-indonesia&tag=berita-utama〈=ID. Accessed 30 Oct 2020

5. BNPB (2021) Data Informasi Bencana Indonesia. http://dibi.bnpb.go.id/. Accessed 3 Feb 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3