Author:
Fei Xianfeng, ,Igarashi Yasunobu,Shinkai Makoto,Ishikawa Masatoshi,Hashimoto Koichi, , , ,
Abstract
We formulate a parallel, region-based level set model to speed up accurate boundary detection of moving objects in low-contrast images, applying parallelization and discretization to a Chan-Vese (CV) model. We implement the model in a column parallel vision (CPV) system that is one of parallel image processing systems we developed for robot vision. Using a microscopic image of moving paramecia as a sample of a low-contrast image, our model detects moving paramecia boundaries within 2 ms per image. Comparisons of our model to a CV model using the CPV system and a nonparallel PC, we found that our model cuts calculation time for a CV model while obtaining accuracy similar to the CV model in boundary detection of moving objects.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference28 articles.
1. I. Ishii and M. Ishikawa, “Self windowing for high-speed vision,” Systems and Computers in Japan, 32, pp. 51-58, 2001.
2. Y. Nakabo, M. Ishikawa, H. Toyoda, and S. Mizuno, “1ms Column Parallel Vision System and It's Application of High Speed Target Tracking,” Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation, 10, pp. 650-655, 2000.
3. H. Oku, M. Ishikawa, Theodorus, and K. Hashimoto, “High-speed autofocusing of a cell using diffraction patterns,” Optics Express, 14, pp. 3952-3960, 2006.
4. H. Oku, N. Ogawa, K. Hashimoto, and M. Ishikawa, “Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques,” Review of Scientific Instruments, 76, 034301-1-034301-8, 2005.
5. K. Hashimoto, “Visual servoing: real-time control of robot manipulators Based on Visual Sensory Feedback,” World Scientific Series in Robotics and Automated Systems - Vol.7, World Scientific, 1993.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamic Intelligent Systems Based on High-Speed Vision;Journal of Robotics and Mechatronics;2019-02-20
2. Fast and Adaptive Auto-focusing Microscope;Transactions of the Society of Instrument and Control Engineers;2011