High Speed and High Sensitivity Slip Sensor Utilizing Characteristics of Conductive Rubber - Relationship Between Shear Deformation of Conductive Rubber and Resistance Change -

Author:

Teshigawara Seiichi, ,Tadakuma Kenjiro,Ming Aiguo,Ishikawa Masatoshi,Shimojo Makoto,

Abstract

Humans can grasp an object without information such as a coefficient of friction or weight. To implement this grasping motion with the robot hand, sensors have been proposed that detect an incipient slip within the contact surface or stick-slip. A large number of slip sensors have been proposed, but small, flexible, and practical slip sensors are currently not available yet. We have been involved in research and development activities for a center of pressure (CoP) tactile sensor that is small and flexible. This sensor uses a pressure conductive rubber to detect the central position of the load distribution and total load. As a result of using the sensor to make experiments on slip detection, we found that a peculiar change appeared in the load output of the sensor immediately before the slip displacement of an object occurred. Based on this output change, we proposed a control method that was capable of setting a grasping force in accordance with the weight of an object. However, the principle was not made clear that caused the output change to occur. We hypothesized that the change was caused by the characteristics of the pressure conductive rubber used for the material of the sensor. As a result of making verification experiments based on this hypothesis, we found that the output change was due to a change in the resistance value when the pressure conductive rubber shear deformed. It was also found that the scale of a change in the resistance value was dependent largely upon the shear deformation speed of the pressure conductive rubber. This paper describes the principle that a peculiar change occurs in the CoP sensor immediately before the occurrence of an object slip. It also reports the characteristics of the pressure conductive rubber that have newly been made apparent.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3