Estimation of Potential Economic Losses Due to Flooding Considering Variations of Spatial Distribution of Houses and Firms in a City

Author:

Kotone Kaito,Taniguchi Kenji,Nakamura Koichi,Takayama Yuki, , ,

Abstract

In Japan, flood disasters caused by record-breaking heavy rainfall frequently cause significant damages. It is also great concern that heavy rainfall may increase and occur more frequently due to global warming. In July 2013, a heavy rainfall event caused record-flooding of the Kakehashi River in Ishikawa Prefecture. In this study, pseudo global warming (PGW) experiments were implemented for the heavy rainfall in 1998 and 2013 around the Kakehashi River basin. Based on the results of PGW simulations, rainfall with different return periods were generated. Runoff analyses and inundation simulations were carried out by forcings with multiple return periods, and the results were used to estimate the economic losses due to flood inundation. Expected values of the economic losses were calculated using two methods for multiple return periods. Differences between the two expected values indicates the importance of the weighting method for the result of each return period. In addition, variations of spatial distribution of houses and firms in a city (i.e., urban structure) were simulated using a computable urban economics (CUE) model for the area of middle-lower reach of the Kakehashi River basin to examine its impact on economic loss due to flooding. In the simulation using the CUE model, a more severe flood inundation risk and an additional insurance burden for general households were added, and possible variations of urban structure were estimated around the lower part of the Kakehashi River basin. Under the more severe risk condition, relocation proceeded from higher risk areas to safer areas, and possible economic losses decreased in the target area. This result indicates that proper recognition of risk can reduce flood damages. On the other hand, there were small variations in economic losses under the condition with the additional flood insurance burden.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference20 articles.

1. Japan Meteorological Agency, “Clinate Change Monitoring Report 2015,” 2016, https://www.jma.go.jp/jma/en/NMHS/ccmr/ccmr2015_high.pdf [accessed Nobemver 18, 2020]

2. Ministry of Land, Infrastructure, Transport and Tourism, “Implementation of disaster prevention and mitigation at a new stage,” 2015, https://www.mlit.go.jp/saigai/newstage.html (in Japanese) [accessed September 15, 2020]

3. K. Taniguchi and Y. Shibuo, “Estimation of expectation of flooding water depth based on heavy rainfalls with different return periods simulated by pseudo global warming method,” J. of Japan Society of Civil Engineers, Ser. B1, Vol.74, No.5, pp. I_1405-I_1410, 2018 (in Japanese).

4. Ministry of Land, Infrastructure, Transport and Tourism, “The flood control economic survey manual (draft),” 2020, https://www.mlit.go.jp/river/basic_info/seisaku_hyouka/gaiyou/hyouka/r204/chisui.pdf (in Japanese) [accessed September 15, 2020]

5. A. Takagi, S. Muto, and N. Ohta, “Economic evaluation of flood control countermeasures by using computable urban economic model,” Advances in River Engineering, Vol.7, pp. 423-428, 2001 (in Japanese).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3