Disposable Robotic Finger Driven Pneumatically by Flat Tubes and a Hollow Link Mechanism

Author:

Tanaka Junya,Matsuhira Nobuto, ,

Abstract

We propose a robotic finger with an exoskeleton-type structure that bends and extends by the deformation force of flat tubes. Our objective is to realize a disposable robot hand for gripping unsanitary objects. To reduce the cost of disposing of the robotic finger, a commercially available cable carrier chain was used for the exoskeleton component, and the flat tubes used in the pneumatic actuator were prepared by thermal processing of a commercially available tube. The driving joint of the robotic finger consists of a hollow link mechanism and two flat tubes, which are respectively arranged inside the hollow link mechanism and at the joint boundary. The proposed joint structure achieves both smooth drivability and good load-bearing capacity. The developed robotic finger weighs approximately 85 g and generates a fingertip force of approximately 4 N when a pressure of 0.25 MPa is applied. Because the developed robotic finger is pneumatically driven, it conforms to the object shape and is compliant to external force. Verification of the mechanism demonstrated that the developed robotic finger is useful because it was able to grasp six types of assumed objects.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference24 articles.

1. M. T. Mason and J. K. Salisbury, “Robot Hands and the Mechanics of Manipulation,” The MIT Press, 1985.

2. T. Watanabe, K. Yamazaki, and Y. Yokokohji, “Survey of robotic manipulation studies intending practical applications in real environments – object recognition, soft robot hand, and challenge program and benchmarking –,” Adv. Robot., Vol.31, Nos.19-20, pp. 1114-1132, 2017.

3. K. Tai, A.-R. El-Sayed, M. Shahriari, M. Biglarbegian, and S. Mahmud, “State of the Art Robotic Grippers and Applications,” Robotics, Vol.5, No.2, 11, 2016.

4. S. Hasegawa, K. Wada, K. Okada, and M. Inaba, “A Three-Fingered Hand with a Suction Gripping System for Warehouse Automation,” J. Robot. Mechatron., Vol.31, No.2, pp. 289-304, 2019.

5. A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators,” Soft Robotics, Vol.1, No.1, pp. 75-87, 2014.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3