Development of a Flexible Assembly System for the World Robot Summit 2020 Assembly Challenge

Author:

Xu Lizhou1,Heravi Farshad Nozad1ORCID,Lahoud Marcel Gabriel1,Marchello Gabriele1ORCID,D’Imperio Mariapaola1,Abidi Syed Haider Jawad1ORCID,Farajtabar Mohammad2,Martini Michele1,Cocuzza Silvio3ORCID,Scaccia Massimiliano1,Cannella Ferdinando1ORCID

Affiliation:

1. Industrial Robotics Facility, Italian Institute of Technology, 30 Via Morego, Genova 16163, Italy

2. Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada

3. Department of Industrial Engineering, University of Padova, 1 Via Venezia, Padova 35131, Italy

Abstract

The assembly challenge of the World Robot Challenge (WRC) 2020, which was a part of the World Robot Summit (WRS) 2020, aimed to complete rapidly changing tasks in high mix/low volume production through building agile and lean production systems that can respond to one-off products. The authors of this paper participated in the challenge with the team PneuBot from the Industrial Robotics Facility of the Italian Institute of Technology by developing a flexible assembly system. The purpose of this work was to develop an assembly system able to handle variations of parts and tasks with a minimal changeover in hardware and software. In particular, assembly tasks were carried out, such as the assembly of a DC motor, pulleys, and a flexible belt on a plate, starting from pieces of unknown positions and orientations on a tray. The proposed work cell is light-weighted and can be fast deployed and replicated. It is composed of two Universal Robots; an RGB-D camera mounted on the wrist of the robot, able to detect both the position and orientation of the different objects to manage; a custom gripping system composed of 3D printed fingers for manipulation purposes and miniature force sensors for the grasping detection.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3