Study on Pipetting Motion Optimization of Automatic Spheroid Culture System for Spheroid Formation
-
Published:2021-02-20
Issue:1
Volume:33
Page:78-87
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Shimoto Takeshi,Teshima Chihiro,Watanabe Toshiki,Zhang Xiu-Ying,Ishikawa Atsushi,Higaki Hidehiko,Nakayama and
Koichi, , , ,
Abstract
This research group has established a technology for producing a three-dimensional cell constructed using only the cell itself. This technology uses a property in which the spheroids fuse with each other. We developed a system that automates the spheroid production process to obtain reproducible spheroids and suppress variation factors that occur from human operation. However, it has become clear that the dispersion occurs in the diameter depending on the number of cells of the spheroid even if the cells are handled in the same manner. The purpose of this research is to examine an appropriate pipetting motion in accordance with the number of cells of the spheroid to be produced. Rabbit mesenchymal stem cells (rMSCs) are used as the objects. The number of cells was set to 2×104, 3×104, and 4×104 cells/well, and the passage number as 7. The appearance of spheroids cultured using the motion programmed in accordance with each number of cells was observed every 24 hours for 5 days after seeding. The results of the analysis indicate that the optimum motion in each number of cells has been successfully specified, and reproducible spheroids have been successfully produced.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference20 articles.
1. B. Gao, K. Sakaguchi, K. Matsuura, T. Ogawa, Y. Kagawa, H. Kubo, and T. Shimizu, “In Vitro production of human ballooned hepatocytes in a cell sheet-based three-dimensional model,” Tissue Engineering, Part A, Vol.26, No.1-2, pp. 93-101, 2020. 2. Y. Kasai, R. Takagi, S. Kobayashi, T. Owaki, N. Yamaguchi, H. Fukuda, Y.\ Sakai, Y. Sumita, N. Kanai, H. Isomoto, K. Kanetaka, T. Ohki, I. Asahina, K.\ Nagai, K. Nakao, N. Takeda, T. Okano, S. Eguchi, and M. Yamato, “A stable protocol for the fabrication of transplantable human oral mucosal epithelial cell sheets for clinical application,” Regenerative Therapy, Vol.14, pp. 87-94, 2020. 3. K. Arai, Y. Tsukamoto, H. Yoshida, H. Sanae, T. A. Mir, S. Sakai, T. Yoshida, M. Okabe, M. Nikaido, M. Taya, and M. Nakamura, “The development of cell-adhesive hydrogel for 3D printing,” Int. J. Bioprinting, Vol.2, No.2, pp. 44-53, 2016. 4. V. L. Tsang, A. A. Chen, L. M. Cho, K. D. Jadin, R. L. Sah, S. DeLong, J. L. West, and S. N. Bhatia, “Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels,” The FASEB J., Vol.21, pp. 790-801, 2006. 5. N. Minghao and T. Shoji, “Microfluidics based synthesis of coiled hydrogel microfibers with flexible shape and dimension control,” Sensors and Actuators B, Vol.246, pp. 358-362, 2017.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|