The development of cell-adhesive hydrogel for 3D printing

Author:

Arai Kenichi,Tsukamoto Yoshinari,Yoshida Hirotoshi,Sanae Hidetoshi,Ahmad Mir Tanveer,Sakai Shinji,Yoshida Toshiko,Okabe Motonori,Nikaido Toshio,Taya Masahito,Nakamura MakotoORCID

Abstract

Biofabrication has gained tremendous attention for manufacturing functional organs or tissues. To fabricate functional organs or tissues, it is necessary to reproduce tissue-specific micro to macro structures. Previously, we de-veloped a custom-made 3D-bioprinter with the capability to print and fabricate 3D complicated hydrogel structures composed of living cells. Through the gelation reaction, fine and complicated 3D gel structures can be fabricated via layer by layer printing. Alginate hydrogel has been used mainly due to its good fabricating properties. However, it is not a reliable platform for tissue regeneration because of its inadequate cell-adhesiveness. Therefore, our laboratory is in-terested to explore more suitable hydrogels for bioprinting and 3D tissue fabrication. In this study, we tried to fabricate 3D gel structures with enough cell-adhesive properties. We focused on hydrogel formation through enzymatic reaction by incorporating materials bearing phenolic hydroxyl moieties and horseradish peroxidase. We examined Alg-Ph and Alg-Ph/Gelatin-Ph gels. We used a mixed solution of applied materials as bioink and printed into H2O2 solution. We successfully fabricated the 3D gel sheet structures including fibroblasts cultures. Fibroblast proliferation and viability were also observed in the 3D gel sheet for more than one week. In conclusion, the hydrogel obtained through enzymatic reaction is a biocompatible bioink material which can be applied to fabricate 3D cell-adhesive gel structures using a 3D-bioprinter.

Publisher

Whioce Publishing Pte Ltd

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3