A Novel Method for Goal Recognition from 10 m Distance Using Deep Learning in CanSat

Author:

Akiyama Miho,Saito Takuya, ,

Abstract

In this study, we propose a method for CanSat to recognize and guide a goal using deep learning image classification even 10 m away from the goal, and describe the results of demonstrative evaluation to confirm the effectiveness of the method. We applied deep learning image classification to goal recognition in CanSat for the first time at ARLISS 2019, and succeeded in guiding it almost all the way to the goal in all three races, winning the first place as overall winner. However, the conventional method has a drawback in that the goal recognition rate drops significantly when the CanSat is more than 6–7 m away from the goal, making it difficult to guide the CanSat to the goal when it moves away from the goal because of various factors. To enable goal recognition from a distance of 10 m from the goal, we investigated the number of horizontal regions of interest divisions and the method of vertical shifts during image recognition, and clarified the effective number of divisions and recognition rate using experiments. Although object detection is commonly used to detect the position of an object from an image by deep learning, we confirmed that the proposed method has a higher recognition rate at long distances and a shorter computation time than SSD MobileNet V1. In addition, we participated in the CanSat contest ACTS 2020 to evaluate the effectiveness of the proposed method and achieved the zero-distance goal in all three competitions, demonstrating its effectiveness by winning first place in the comeback category.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method to Achieve High Speed and High Recognition Rate of Goal from Long Distance for CanSat;Journal of Robotics and Mechatronics;2023-02-20

2. Proposal of a Method for Inferring the Road Surface from Vibration Using Deep Learning on CanSat;2022 International Conference on Computational Science and Computational Intelligence (CSCI);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3