Method to Achieve High Speed and High Recognition Rate of Goal from Long Distance for CanSat

Author:

Akiyama Miho1ORCID,Ninomiya Hiroshi2ORCID,Saito Takuya3ORCID

Affiliation:

1. Graduate School of Electrical and Information Engineering, Shonan Institute of Technology, 1-1-25 Tsujido-nishikaigan, Fujisawa, Kanagawa 251-8511, Japan

2. Department of Information Science, Faculty of Engineering, Shonan Institute of Technology, 1-1-25 Tsujido-nishikaigan, Fujisawa, Kanagawa 251-8511, Japan

3. Department of Informatics, Faculty of Informatics, Tokyo University of Information Sciences, 4-1 Onaridai, Wakaba-ku, Chiba-city, Chiba 265-8501, Japan

Abstract

A structure is proposed for high-speed goal recognition by SSD MobileNet using the Coral USB Accelerator. It was confirmed that the goal recognition rate from a long distance is equal to or better than that of conventional methods. Using this method, two CanSat contests were won. The aim of the CanSat competitions is to guide the CanSat to a distance of 0 m from the goal. It is initially guided by GPS but must eventually employ an image recognition model to identify the nearby goal. Zero-meter guidance to the goal was achieved in the Tanegashima Rocket Contest 2018 using a method that recognized the color of the goal by the color of the image, but it was vulnerable to changes in lighting conditions, such as weather changes. Therefore, a deep-learning method for CanSat goal recognition was applied for the first time at ARLISS 2019, and the zero-distance goal was achieved, winning the competition. However, it took more than 10 s for recognition owing to the CPU calculations, making it time consuming to reach the goal. The conventional method uses image classification to recognize the location of a goal by preparing multiple regions of interest (ROIs) in the image and repeating the recognition operations for each ROI. However, this method has a complex algorithm and requires the recognition of more ROIs to recognize goals over long distances, which is computationally time consuming. Object detection is an effective method to identify the location of the target object in an image. However, even if the lightest SSD MobileNet V1 and V2 and a hardware accelerator are used, the computation time may not be short enough because the computer is a Raspberry Pi Zero, the weakest class of Linux computers. In addition, if SSD MobileNet V1 and V2 do not have a sufficiently high recognition rate at long distances from the goal compared with conventional methods, it will be difficult to adapt them to a CanSat. To clarify this, SSD MobileNet V1 and V2 were applied to a Raspberry Pi Zero connected to a Coral USB Accelerator, and the recognition rate and recognition time were investigated at long distances from the goal. It was found that the recognition rate was equivalent to or better than that of the conventional method, even at long distances from the goal, and that the recognition time was sufficiently short (approximately 0.2 s). The effectiveness of the proposed method was evaluated at the Noshiro Space Event 2021 and Asagiri CanSat Drop Test (ACTS) 2021, and the 0-m goal was achieved at both events.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3