Development of a Decommissioning Robot with a Simple Structure Capable of Traversing Steps Using Two Different Drive Systems

Author:

Miura Riku1, ,Tozaki Seiya1,Mikado Ibuki1,Takei Toma1,Ogake Shuichiro2,Kobayashi Kazuma1,Mitsui Satoshi1,Satake Toshifumi1,Igo Naoki3ORCID

Affiliation:

1. National Institute of Technology, Asahikawa College, 2-2-1-6 Shunkodai, Asahikawa, Hokkaido 071-8142, Japan

2. Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

3. Tokyo Information Design Professional University, 2-7-1 Komatsugawa, Edogawa-ku, Tokyo 132-0034, Japan

Abstract

In response to the imperative need for robotic involvement in the decommissioning of the Fukushima Daiichi Nuclear Power Plant, a proactive initiative was undertaken. This initiative led to the organization of the “7th Decommissioning Creative Robot Contest,” in which pivotal challenges related to nuclear plant decommissioning were addressed. Recognizing inaccessible areas within a decommissioned plant, the primary objective of this study was to develop a remotely operated robot capable of executing decontamination tasks in such environments. Two distinct locomotion systems were designed: mecanum wheels and crawlers. The mecanum wheels, characterized by their ability to execute approximately 100 mm vertical movements, facilitated the robot to surmount obstacles, particularly by negotiating 100 mm steps by engaging the tracks. Simultaneously, to address decontamination tasks at elevated locations, a threefold expandable ladder truck system was integrated, augmenting the operational range of the robot. Participation in the contest provided a platform for showcasing the developed technologies and validating their practicality. Despite encountering challenges during competition, such as damage to one locomotion system, the other locomotion system can be used to reach the destination. Experience serves as a crucial means of verifying technological advancements. Issues such as malfunctions in the range of motion control due to faulty limit switch contacts and unexpected loads on the tire elevation motors were noted, which hindered the achievement of the anticipated results. Despite these drawbacks, the adopted structural design demonstrates notable advantages, particularly in terms of maneuverability. The combination of mecanum wheels and crawlers along with a ladder truck system demonstrated adaptability to various scenarios. This adaptability holds significant promise for future nuclear power plant decontamination applications. While the competition may not have yielded the desired outcome, the lessons learned and the verified practicality of the developed technologies reinforce their potential utility in addressing the future challenges of nuclear plant decommissioning.

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3