Semi-Automatic Dataset Generation for Object Detection and Recognition and its Evaluation on Domestic Service Robots

Author:

Ishida Yutaro, ,Tamukoh Hakaru

Abstract

This paper proposes a method for the semi-automatic generation of a dataset for deep neural networks to perform end-to-end object detection and classification from images, which is expected to be applied to domestic service robots. In the proposed method, the background image of the floor or furniture is first captured. Subsequently, objects are captured from various viewpoints. Then, the background image and the object images are composited by the system (software) to generate images of the virtual scenes expected to be encountered by the robot. At this point, the annotation files, which will be used as teaching signals by the deep neural network, are automatically generated, as the region and category of the object composited with the background image are known. This reduces the human workload for dataset generation. Experiment results showed that the proposed method reduced the time taken to generate a data unit from 167 s, when performed manually, to 0.58 s, i.e., by a factor of approximately 1/287. The dataset generated using the proposed method was used to train a deep neural network, which was then applied to a domestic service robot for evaluation. The robot was entered into the World Robot Challenge, in which, out of ten trials, it succeeded in touching the target object eight times and grasping it four times.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3