Development of Multi-Articulated Tracked Vehicle with a Sensorless Salvaging Bucket for Decommissioning

Author:

Hirasawa Junji, ,Isobe Shun,Kuramochi Yusuke,Nishino Mitsuhiro,Nihei Yoshihisa

Abstract

In this paper, we describe a prototypical crawler vehicle developed for “Hairo Sozo Robocon,” i.e., the 4th creative robot contest for decommissioning conducted in 2019. The rules of this robot contest required a high turning ability on a flat floor and high mobility through the inner space of a pipe. In addition, the robot needed to salvage objects from a floor placed 3.2 meters underneath itself. We developed a multi-articulated tracked vehicle to provide high mobility in both contexts. The vehicle was equipped with a sensorless salvaging bucket inspired by a traditional sampler sounding weight.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference12 articles.

1. H. Kondo, K. Sato, and N. Sugiyama, “Practical Analysis of Turning Resistance of the Tracked Vehicle,” J. of the Japanese Society Agricultural Machinery, Vol.50, No.2, pp. 19-25, 1988 (in Japanese).

2. N. Ito, K. Kito, and J. Bai, “Evaluation of Turnability for Tracked Vehicle (Part 1) – Comparison Between Spin and Pivot Turn Systems –,” J. of the Japanese Society Agricultural Machinery, Vol.56, No.6, pp. 11-16, 1994 (in Japanese).

3. Desrial and N. Ito, “Theoretical Model for the Estimation of Turning Motion Resistance for the Tracked Vehicle,” J. of the Japanese Society Agricultural Machinery, Vol.61, No.6, pp. 169-178, 1999.

4. J. Hirasawa and T. Kimura, “Development of stair-climbing mechanism with passive crawlers (analysis of limitation for crawler rotation angle and test vehicle performance),” Trans. of the JSME, Vol.82, No.834, doi: 10.1299/transjsme.15-00357, 2016 (in Japanese).

5. J. Hirasawa, “Improvement of the Mobility on the Step-Field for a Stair Climbable Mobile Robot with Passive Crawlers,” J. Robot. Mechatron., Vol.32, No.4, pp. 780-788, 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3