Optimization of the Electrode Arrangement and Reliable Fabrication of Flexible EHD Pumps
-
Published:2020-10-20
Issue:5
Volume:32
Page:939-946
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Seki Yumeta,Kuwajima Yu,Shigemune Hiroki,Yamada Yuhei,Maeda Shingo, ,
Abstract
Soft robots have great potential to realize machines that interact and coexist with humans. A key technology to realize soft robots is soft fluidic actuators. Previously, we developed a soft pump using the electrohydrodynamics (EHD) phenomenon. EHD is a flow phenomenon, which is generated by applying a high voltage to a dielectric fluid. In this study, we developed flexible high-power-density EHD pumps. First, a pump was fabricated by a simple design with interdigitated electrodes. Second, a mathematical model was used to analyze the pressure generated per length assuming that electric fields only act between neighboring electrodes in a flexible EHD pump with interdigitated electrodes. The results were used to optimize the gap between electrodes to maximize the pressure per length. Third, we used the optimized process to fabricate multiple flexible EHD pumps. The procedure produced pumps easily and reliably. Fourth, we compared the experimental values with the analytical solutions. The good agreement confirmed that the generated pressure per unit length can be approximated in a uniform electric field between neighboring electrodes. Because our flexible EHD pump can operate even when deformed, it has potential for wearable device applications.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference29 articles.
1. A. Minaminosono, H. Shigemune, Y. Okuno, T. Katsumata, N. Hosoya, and S. Maeda, “A deformable motor driven by dielectric elastomer actuators and flexible mechanisms,” Frontiers in Robotics and AI, Vol.6, No.1, pp. 1-12, doi: 10.3389/frobt.2019.00001, 2019. 2. C. Jiang, K. Takagi, S. Hirano, T. Suzuki, S. Hosoe, K. Hashimoto, and A. Nozawa, “Flexible Parallel Link Mechanism Using Tube-Type Dielectric Elastomer Actuators,” J. Robot. Mechatron., Vol.27, No.5, pp. 504-512, doi: 10.20965/jrm.2015.p0504, 2015. 3. Y. Okuno, H. Shigemune, Y. Kuwajima, and S. Maeda, “Stretchable Suction Cup with Electroadhesion,” Advanced Materials Technologies, Vol.4, No.1, 1800304, doi: 10.1002/admt.201800304, 2019. 4. S. Maeda, T. Kato, Y. Otsuka, N. Hosoya, C. Matteo, and C. Laschi, “Large deformation of self-oscillating polymer gel,” Physical Review E, Vol.93, 010501, doi: 10.1103/PhysRevE.93.010501, 2016. 5. Z. Mao, M. Kuroki, Y. Otsuka, and S. Maeda, “Contraction waves in self-oscillating polymer gels,” Extreme Mechanics Letters, Vol.39, 100830, doi: 10.1016/j.eml.2020.100830, 2020.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|