Polyvinyl chloride-added dibutyl adipate for high-performance electrohydrodynamic pumps

Author:

Shimizu Keita,Murakami Kazuya,Ogawa Naoki,Akai Hideko,Shintake Jun

Abstract

Electrohydrodynamic (EHD) pumps are a promising driving source for various fluid-driven systems owing to features such as simple structure and silent operation. The performance of EHD pumps depends on the properties of the working fluid, such as conductivity, viscosity, and permittivity. This implies that the tuning of these parameters in a working fluid can enhance the EHD performance. This study reports a method to modify the properties of a liquid for EHD pumps by mixing an additive. Specifically, dibutyl adipate (DBA) and polyvinyl chloride (PVC) are employed as the working fluid and the additive, respectively. The results show that when the concentration of PVC is 0.2%, the flow rate and pressure at applied voltage of 8 kV take highest value of 7.85 μL/s and 1.63 kPa, respectively. These values correspond to an improvement of 109% and 40% for the flow rate and pressure, respectively, compared to the pure DBA (PVC 0%). When the voltage is 10 kV, the flow rate of 10.95 μL/s and the pressure of 2.07 kPa are observed for DBA with PVC concentration of 0.2%. These values are more than five times higher than those observed for FC40 at the same voltage (2.02 μL/s and 0.32 kPa). The results also suggest that optimal conductivity and viscosity values exist for maximizing the EHD performance of a liquid. This demonstrates the validity of the proposed method for realizing high-performance EHD pumps by using additives in the working fluid.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference22 articles.

1. MTM FluorinertTM electronic liquid FC-40 | 3M United States 3M Science applied to life 2022

2. Microfabricated electrohydrodynamic pumps;Bart;Sensors Actuators A Phys.,1990

3. Stretchable pumps for soft machines;Cacucciolo;Nature,2019

4. Advances and applications of electrohydrodynamics;Chen;Chin. Sci. Bull.,2003

5. Selecting a working fluid to increase the efficiency and flow rate of an EHD pump;Crowley;IEEE Trans. Ind. Appl.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3