Author:
Takashima Kazuto,Imazawa Toshiki,Cho Hiroki, ,
Abstract
In this study, we developed a variable-stiffness and deformable link using shape-memory material and the jamming transition phenomenon. Above its glass transition temperature (Tg), a shape-memory polymer (SMP) can be deformed by applying a small load. SMPs maintain the deformed shape after they have been cooled below Tg, and they return to their original shape when heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of SMPs can be on the order of 100–1000 times. We exploited the characteristics of SMPs to develop robot components with variable stiffness and sensitivity. The jamming transition phenomenon for granular material has been widely used as a method to change the stiffness of robots. This phenomenon is the change from fluid-like to solid-like conditions by removing air from a space containing particles. In this study, we developed a variable-stiffness link by combining the SMP and the jamming transition phenomenon. Moreover, by replacing the SMP with shape-memory alloys (SMAs), whose recovery force and elastic modulus are larger than those of SMPs, we prepared a second prototype with variable stiffness. We evaluated the performance of both prototypes, using the SMP or the SMA, with experiments and confirmed the motion principle of the proposed link (e.g., shape recovery and shape fixity). Moreover, it was confirmed that the stiffness of these links can be changed among four states.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献