A New Improved Penalty Avoiding Rational Policy Making Algorithm for Keepaway with Continuous State Spaces

Author:

Watanabe Takuji, ,Miyazaki Kazuteru,Kobayashi Hiroaki, ,

Abstract

The penalty avoiding rational policy making algorithm (PARP) [1] previously improved to save memory and cope with uncertainty, i.e., IPARP [2], requires that states be discretized in real environments with continuous state spaces, using function approximation or some other method. Especially, in PARP, a method that discretizes state using a basis functions is known [3]. Because this creates a new basis function based on the current input and its next observation, however, an unsuitable basis function may be generated in some asynchronous multiagent environments. We therefore propose a uniform basis function and range extent of the basis function is estimated before learning. We show the effectiveness of our proposal using a soccer game task called “Keepaway.”

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3