Reinforcement Learning for Penalty Avoidance in Continuous State Spaces

Author:

Miyazaki Kazuteru, ,Kobayashi Shigenobu,

Abstract

Reinforcement learning involves learning to adapt to environments through the presentation of rewards – special input &#8211 serving as clues. To obtain quick rational policies, profit sharing (PS) [6], rational policy making algorithm (RPM) [7], penalty avoiding rational policy making algorithm (PARP) [8], and PS-r* [9] are used. They are called PS-based methods. When applying reinforcement learning to actual problems, treatment of continuous-valued input is sometimes required. A method [10] based on RPM is proposed as a PS-based method corresponding to the continuous-valued input, but only rewards exist and penalties cannot be suitably handled. We studied the treatment of continuous-valued input suitable for a PS-based method in which the environment includes both rewards and penalties. Specifically, we propose having PARP correspond to continuous-valued input while simultaneously targeting the attainment of rewards and avoiding penalties. We applied our proposal to the pole-cart balancing problem and confirmed its validity.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference18 articles.

1. P. Abbeel and A. Y. Ng, “Exploration and apprenticeship learning in reinforcement learning,” Proceedings of the 21st International Conference on Machine Learning, pp. 1-8, 2005.

2. L. Chrisman, “Reinforcement Learning with perceptual aliasing: The Perceptual Distinctions Approach,” Proceedings of the 10th National Conference on Artificial Intelligence, pp. 183-188, 1992.

3. H. Kimura and S. Kobayashi, “An analysis of actor/critic algorithms using eligibility traces: reinforcement learning with imperfect value function,” Proceedings of the 15th International Conference on Machine Learning, pp. 278-286, 1998.

4. H. Kimura, “Reinforcement Learning in multi-dimensional stateaction space using random tiling and Gibbs sampling,” Transactionof the Society of Instrument and Control Engineers, Vol.42, No.12, 2006 (in Japanese).

5. H. Kita, I. Ono, and S. Kobayashi, “Theoretical Analysis of the Unimodal Normal Distribution Crossover for Real-coded Genetic Algorithm,” Proceedings of 1998 IEEE Int. Conf. on Evolutionary Computation, pp. 529-534, 1998.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3