Author:
Kurihara Satoshi, ,Ogawa Ryo,Shinoda Kosuke,Suwa Hirohiko,
Abstract
Traffic congestion is a serious problem for people living in urban areas, causing social problems such as time loss, economical loss, and environmental pollution. Therefore, we propose a multi-agent-based traffic light control framework for intelligent transport systems. Achieving consistent traffic flow necessitates the real-time adaptive coordination of traffic lights; however, many conventional approaches are of the centralized control type and do not have this feature. Our multi-agent-based control framework combines both indirect and direct coordination. Reaction to dynamic traffic flow is attained by indirect coordination, whereas green-wave formation, which is a systematic traffic flow control strategy involving several traffic lights, is attained by direct coordination. We present the detailed mechanism of our framework and verify its effectiveness using simulation to carry out a comparative evaluation.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference21 articles.
1. S. Kurihara, H. Tamaki, M. Numao, K. Kagawa, J. Yano, and T. Morita, “Traffic congestion forecasting based on pheromone communication model for intelligent transport systems,” Proc. of IEEE Congress on Evolutionary Computation, pp. 2879-2884, May 2009.
2. T. Nakata and J. Takeuchi, “Mining traffic data from probe-car system for travel time prediction,” Proc. of the 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 817-822, August 2004.
3. MODERATO-S, Sumitomo electric industries, ltd., http://global-sei.com/its/systems/itcs.html.
4. N. Gartner, F. Pooran, and C. Andrews, “Implementation of the opac adaptive control strategy in a traffic signal network,” Proc. of Intelligent Transportation Systems, pp. 195-200, 2001.
5. S. Takahashi, H. Nakamura, H. Kazama, and T. Fujikura, “Adaptive traffic signal control for the fluctuations of the flow using a genetic algorithm,” WIT PRESS, 2002.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献