Traffic information interpolation method based on traffic flow emergence using swarm intelligence

Author:

Suga Satoshi,Fujimori Ryu,Yamada Yuji,Ihara Fumito,Takamura Daiki,Hayashi Ken,Kurihara Satoshi

Abstract

AbstractTraffic congestion has become one of the most pressing social problems in today’s society, and research into appropriate traffic signal control is actively underway. At present, most traffic signal control methods define traffic signal parameters on the basis of traffic information such as the number of passing vehicles. Installing sensors at a vast number of intersections is necessary for more precise and real-time adaptive control, but this is unrealistic from the viewpoint of cost. As an alternative, we propose a swarm intelligence-based methodology that creates routes with a similar traffic volume using the traffic information from intersections already equipped with sensors and interpolates this information in the intersections without sensors in real time. Our simulation results show that the proposed methodology can effectively create similar traffic routes for main traffic flows with high traffic volumes. The results also show that it has an excellent interpolation performance for heavy traffic flows and can adapt and interpolate to situations where traffic flow changes suddenly. Moreover, the interpolation results are highly accurate at a road link where traffic flows confluence. We also developed an interpolation algorithm that is adaptable to traffic patterns with confluence traffic flows. Experiments were conducted with a simulation of merging traffic flows and the proposed method showed good results.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3