Fault Tolerant Predictive Control Based on Discrete-Time Sliding Mode Observer for Quadrotor UAV

Author:

Shu Qibao, ,Yang Pu,Wang Yuxia,Ma Ben

Abstract

An active fault-tolerant control scheme for a quadrotor unmanned aerial vehicle (UAV) with actuators faults is presented in this paper. The proposed scheme is based on model predictive control (MPC) and the discrete-time sliding mode observer. Considering the impact of disturbances on fault diagnosis, a discrete-time sliding mode observer with simple structure and strong robustness against the disturbances is designed to isolate the actuator faults and estimate the control effectiveness factors accurately. Using the fault diagnosis information, a model predictive active fault tolerant controller with embedded integrator is proposed to compensate parameter uncertainty and bounded disturbances in the realistic control system of the quadrotor. The advantages of the proposed control scheme are the ability of dealing with the control constraints, improving the fault-tolerant control precision and getting better real-time and anti-interference performance. The algorithm comparison experimental results on the quadrotor semi-physical simulation platform validate the feasibility and effectiveness of the proposed control scheme.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault-Tolerant Control with Fast Convergence under Actuator Fault of Quadrotor UAV;2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS);2023-09-22

2. Design and Implementation of Attitude Control for Quadrotor UAV Based on Adaptive Fuzzy PID;2022 41st Chinese Control Conference (CCC);2022-07-25

3. A robust model predictive control-based method for fault detection and fault tolerant control of quadrotor UAV;Transactions of the Institute of Measurement and Control;2022-07-19

4. Sliding Mode Predictive Active Fault-tolerant Control Method for Discrete Multi-faults System;International Journal of Control, Automation and Systems;2020-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3