On the Learning Method, Properties of the Extended Functional-Type SIRMs Connected Fuzzy Inference Model and Their Application to a Medical Diagnosis System
-
Published:2018-03-20
Issue:2
Volume:22
Page:176-183
-
ISSN:1883-8014
-
Container-title:Journal of Advanced Computational Intelligence and Intelligent Informatics
-
language:en
-
Short-container-title:JACIII
Author:
Krieken Diederik van,Seki Hirosato,Inuiguchi Masahiro, ,
Abstract
Seki et al. have proposed the functional type single input rule modules fuzzy inference model (functional-type SIRMs model, for short) which generalized consequent part of SIRMs model to function. However, it is too strict to satisfy the equivaence conditions of T–S inference model. Therefore, this paper proposes an extended functional-type SIRMs model (EF-SIRMs, for short) in which the consequent part of the functional-type SIRMs model is extended to a function with 1 dimensional polynomial from a function with n dimensional polynomial, and its properties are clarified. Further, it shows the ability of this model becomes greatly larger than that of ordinary functional-type SIRMs model. Moreover, it proposes a learning method of the EF-SIRMs model, and it is applied to a medical diagnosis, and compared with the conventional SIRMs models.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference15 articles.
1. N. Yubazaki, J. Yi, M. Otani, and K. Hirota, “SIRMs dynamically connected fuzzy inference model and its applications,” Proc. IFSA’97, Vol.3, pp. 410-415, Prague, Czech, 1997. 2. J. Yi, N. Yubazaki, and K. Hirota, “Upswing and stabilization control of inverted pendulum and cart system by the SIRMs dynamically connected fuzzy inference model,” Proc. 1999 IEEE Int. Conf. on Fuzzy Syst., Vol.1, pp. 400-405, 1999. 3. J. Yi, N. Yubazaki, and K. Hirota, “A proposal of SIRMs dynamically connected fuzzy inference model for plural input fuzzy control,” Fuzzy Sets Syst., Vol.125, No.1, pp. 79-92, 2002. 4. J. Yi, N. Yubazaki, and K. Hirota, “A new fuzzy controller for stabilization of parallel-type double inverted pendulum system,” Fuzzy Sets Syst., Vol.126, No.1, pp. 105-119, 2002. 5. H. Seki and M. Mizumoto, “On the equivalence conditions of fuzzy inference methods – part 1: basic concept and definition” IEEE Trans. on Fuzzy Sust., Vol.19, No.6, pp. 1097-1106, 2011.
|
|