Research on the Social Network Search Strategy from the Viewpoint of Comprehensive Influence Maximization
-
Published:2023-11-20
Issue:6
Volume:27
Page:1037-1044
-
ISSN:1883-8014
-
Container-title:Journal of Advanced Computational Intelligence and Intelligent Informatics
-
language:en
-
Short-container-title:JACIII
Affiliation:
1. Library, Taizhou University, No.1139 Shifu Big Road, Jiaojiang District, Taizhou, Zhejiang 318000, China 2. Library, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China
Abstract
Considering that social network provides a channel for nodes to exchange information, resources, and interests, the fundamental task of social network search is to find the best path from the source node to the target node. The search strategy based on the shortest path principle ignores the strength and direction of the social relationship between nodes in the social network, and ignores the difference of influence between nodes, so that the search results cannot meet the needs of searchers. Considering the important role of the influence of nodes and the influence intensity between nodes in social network search, this paper proposes the path optimization principle of maximizing the comprehensive influence, and constructs a new search algorithm based on this strategy by applying the modified Dijkstra algorithm to solve the optimal path between nodes. Using the data of typical real social networks, it is verified that the path optimization algorithm based on the principle of maximizing comprehensive impact is better than the optimization algorithm based on the shortest path, and the search results are better interpretable to users. This paper had proposed a new influence maximization algorithm which has more advantages for solving social network search with high costs or benefits consideration by taking the influence intensity of nodes or between nodes into account.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference25 articles.
1. P. Dodds, R. Muhamad, and D. Watts, “An experimental study of search in global social networks,” Science, Vol.301, No.5634, pp. 827-830, 2003. https://doi.org/10.1126/science.1081058 2. Y. M. Du, G. F. Teng, and J. B. Ma, “Research summary on the key technologies of social network search,” New Technology of Library and Information Service, Vol.26, No.2, pp. 68-73, 2010. https://doi.org/10.11925/infotech.1003-3513.2010.02.12 3. L. Shi, J. Luo, C. Y. Zhu et al., “A survey on cross-media search based on user intention understanding in social networks,” Information Fusion, Vol.91, No.3, pp. 566-581, 2023. https://doi.org/10.1016/j.inffus.2022.11.017 4. D. Centola, “The Spread of behavior in an online social network experiment,” Science, Vol.329, No.5996, pp. 1194-1197, 2010. https://doi.org/10.1126/science.1185231 5. S. Aral and D. Walker, “Identifying influential and susceptible members of social networks,” Science, Vol.337, No.6092, pp. 337-341, 2012. https://doi.org/10.1126/science.1215842
|
|