Author:
Ding Shuxin,Zhang Tao,Liu Ziyuan,Wang Rongsheng,Lu Sai,Xin Bin,Yuan Zhiming, , , , , ,
Abstract
This study addresses a high-speed railway train timetable rescheduling (TTR) problem with a complete blockage at the station and train operation constraints. The problem is formulated as a mixed-integer linear programming (MILP) model that minimizes the weighted sum of the total delay time of trains. A memetic algorithm (MA) is proposed, and the individual of MA is represented as a permutation of trains’ departure order at the disrupted station. The individual is decoded to a feasible schedule of the trains using a rule-based method to allocate the running time in sections and dwell time at stations. Consequently, the original problem is reformulated as an unconstrained problem. Several permutation-based operators are involved, including crossover, mutation, and local search. A restart strategy was employed to maintain the the population diversity. The proposed MA was compared with the first-scheduled-first-served (FSFS) algorithm and other state-of-the-art evolutionary algorithms. The experimental results demonstrate the superiority of MA in solving the TTR through permutation-based optimization in terms of constraint handling, solution quality, and computation time.
Funder
National Natural Science Foundation of China
Foundation of China Academy of Railway Sciences Co., Ltd.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献