Learning-Based Stereoscopic View Synthesis with Cascaded Deep Neural Networks

Author:

Liu Wei,Ma Liyan,Cui Mingyue, ,

Abstract

Depth image-based rendering (DIBR) is an important technique in the 2D to 3D conversion process, which renders virtual views with a texture image and the associated depth map. However, certain problems, such as disocclusion, still exist in current DIBR systems. In this study, a new learning-based framework that models conventional DIBR synthesis pipelines is proposed to solve these problems. The proposed model adopts a coarse-to-fine approach to realize virtual view prediction and disocclusion region refinement sequentially in a unified deep learning framework that includes two cascaded joint filter block-based convolutional neural networks (CNNs) and one residual learning-based generative adversarial network (GAN). An edge-guided global looping optimization strategy is adopted to progressively reconstruct the scene structures on the novel view, and a novel directional discounted reconstruction loss is proposed for better training. In this way, our framework performs well in terms of virtual view quality and is more suitable for 2D to 3D conversion applications. The experimental results demonstrate that the proposed method can generate visually satisfactory results.

Funder

Foundation of Excellent-Young-Backbone Teacher of Colleges and Universities in Henan Province

Key Scientific Research Project of Henan Colleges and Universities

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3