Study on Process Design Based on Language Analysis and Image Discrimination Using CNN Deep Learning

Author:

Hayashi Akio1,Morimoto Yoshitaka1

Affiliation:

1. Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 924-8501, Japan

Abstract

At present, machining with numerically controlled (NC) machine tools is mostly performed by NC programs generated by computer-aided design and computer-aided manufacturing (CAD/CAM) systems. However, even if the machining shape to be machined is the same, there are numerous machining processes involving a series of operations such as determining the machining area, machining order, and machining conditions. These are entrusted to the user, and automation is difficult. In addition, these tasks depend on the experience and know-how of skilled engineers, and it is very difficult to convert them into algorithms and reflect them in the creation of NC programs. Therefore, in this study, artificial intelligence (AI) was used for the process design of multi-tasking machine tools, with the goal of determining and automating the process design using shape examples. We propose a shape recognition method that includes image analysis by AI. This image analysis makes it possible to determine the characteristics of the machining shape, and the machining operator can easily judge the machining process based on the CAD model. Furthermore, because there are shapes that cannot be determined from image data alone, shape features are also extracted from the STEP file of the CAD model. A language analysis of the STEP file can find the characteristic components and their numerical information to determine the coordinates of the shape features. By combining image analysis and language analysis, the method can easily judge the process based on the information in the CAD model. Finally, using the generated learning model and analysis program, we conducted a test to determine whether a multitasking machine tool is necessary for machining.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3