Path Planning Based on Improved Hybrid A* Algorithm

Author:

Tang Bijun, ,Hirota Kaoru,Wu Xiangdong,Dai Yaping,Jia Zhiyang

Abstract

Hybrid A* algorithm has been widely used in mobile robots to obtain paths that are collision-free and drivable. However, the outputs of hybrid A* algorithm always contain unnecessary steering actions and are close to the obstacles. In this paper, the artificial potential field (APF) concept is applied to optimize the paths generated by the hybrid A* algorithm. The generated path not only satisfies the non-holonomic constraints of the vehicle, but also is smooth and keeps a comfortable distance to the obstacle at the same time. Through the robot operating system (ROS) platform, the path planning experiments are carried out based on the hybrid A* algorithm and the improved hybrid A* algorithm, respectively. In the experiments, the results show that the improved hybrid A* algorithm greatly reduces the number of steering actions and the maximum curvature of the paths in many different common scenarios. The paths generated by the improved algorithm nearly do not have unnecessary steering or sharp turning before the obstacles, which are safer and smoother than the paths generated by the hybrid A* algorithm for the autonomous ground vehicle.

Funder

National Talents Foundation under Grant

Natural Science Foundation of Beijing Municipality

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference16 articles.

1. M. Baumann, S. Léonard, E. A. Croft, and J. J. Little, “Path Planning for Improved Visibility Using a Probabilistic Road Map,” IEEE Trans. on Robotics, Vol.26, No.1, pp. 195-200, 2010.

2. M. Kothari and I. Postlethwaite, “A Probabilistically Robust Path Planning Algorithm for UAVs Using Rapidly-Exploring Random Trees,” J. of Intelligent & Robotic Systems, Vol.71, Issue 2, pp. 231-253, 2013.

3. Z. Zhu, E. Schmerling, and M. Pavone, “A Convex Optimization Approach to Smooth Trajectories for Motion Planning with Car-Like Robots,” Proc. of the 2015 54th IEEE Conf. on Decision and Control (CDC), pp. 835-842, 2015.

4. D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically Optimal Motion Planning for Robots with Linear Differential Dynamics,” Proc. of the 2013 IEEE Int. Conf. on Robotics and Automation, pp. 5054-5061, 2013.

5. J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic,” Proc. of the 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2997-3004, 2014.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3