Author:
Mendigoria Christan Hail R.,Aquino Heinrick L.,Alajas Oliver John Y.,II Ronnie S. Concepcion,Dadios Elmer P.,Sybingco Edwin,Bandala Argel A.,Vicerra Ryan Rhay P., ,
Abstract
Seed varieties are often differentiated via the manual and subjective classification of their external textural, spectral, and morphological biosignatures. This traditional method of manually inspecting seeds is inefficient and unreliable for seed phenotyping. The application of computer vision is an ideal solution allied with computational intelligence. This study used Lactuca sativa seed variants, which are commercially known as grand rapid, Chinese loose-leaf, and iceberg (which serves as noise data for extended model evaluation), in determining their corresponding classifications based on the extended morphological phenes using computational intelligence. Red-green-blue (RGB) imaging was employed for individual kernels. Extended morphological phenes, that is, solidity, roundness, compactness, and shape factors, were computed based on seed architectural traits and used as predictors to discriminate among the three cultivars. The suitability of ANFIS, NB, and CT was explored using a limited dataset. A mean accuracy of 100% was manifested in ANFIS; thus, it was proved to be the most reliable model.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献