Development of Tactile-Proprioceptive Display and Effect Evaluation of Local Area Vibration Presentation Method

Author:

Sakai Tadahiro, ,Handa Takuya,Sakajiri Masatsugu,Shimizu Toshihiro,Hiruma Nobuyuki,Onishi Junji, ,

Abstract

We propose a new method of presenting two-dimensional information, such as figures and graphs, on a tactile display so that visually impaired people are able to perceive them quickly and accurately. The new presentation method is developed for a tactile-proprioceptive display, which can present information on not only conventional “concave–convex” tactile display, but also vibration presentation in arbitrary area on a tactile display and mechanical leading presentation by mechanically leading user’s fingers using haptic device. In this paper, we outline the abovementioned two presentation method and the developed tactile-prop display, and objectively evaluate the effects of the local area vibration presentation method as an integral part of the tactile-prop display in comparison with the conventional “concave–convex” presentation method. We conducted experiments to evaluate the effects of the proposed local area vibration presentation method using two typical content patterns. In Experiment 1, discreetly dispersed objects are searched, and in Experiment 2, the cross graphs of line segments are distinguished and perceived. The experiments have proved that the method is effective in reducing search and cognitive time as well as identifying the correct cognition of cross graphs, as compared to the “concave–convex” tactile presentation method.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference27 articles.

1. F. Vidal-Verdu and M. Hafez, “Graphical Tactaile Displays for Visually-Imparired People,” IEEE Trans. on Neural Syst. & Rehabilitation, Vol.15, No.1, 2007.

2. T. Watanabe, T. Yamaguchi, K. Watanabe, J. Akiyama, K. Minatani, M. Miyagi, and S. Oouchi, “Development and Evaluation of a Tactile Map Automated Creation System Accessible to Blind Persons,” IEICE Trans. on Information and Systems (Japanese edition), Vol.J94-D, No.10, pp. 1652-1663, 2011.

3. T. Handa, T. Sakai, M. Misono, T. Morita, and T. Itoh, “Braille Presentation Method for Tactile Display,” IEICE Technical Report (Japanese edition), Welfare Information Technology, Vol.107, No.555, pp. 23-26, 2008.

4. S. Yamamoto, Y. Uchida, S. Shimada, M. Shinohara, and M. Shimojo, “Improvement of User Interface for Interactive Tactile Graphic Display and It’s Application,” Trans. of the Virtual Reality Society of Japan (Japanese edition) Vol.13, No.1, pp. 49-57, 2008.

5. S. Shimada, Y. Murase, and M. Shimojo, “Acquisition System of Wide region for Interactive Tactile Graphic Display,” IEICE Technical Report (Japanese edition), Welfare Information Technology, Vol.113, No.195, pp. 91-95, 2013.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3