Conditional Generative Adversarial Networks to Model iPSC-Derived Cancer Stem Cells

Author:

Aida Saori,Kameda Hiroyuki,Nishisako Sakae,Kasai Tomonari,Sato Atsushi,Sugiyama Tomoyasu, , ,

Abstract

The realization of effective and low-cost drug discovery is imperative to enable people to easily purchase and use medicines when necessary. This paper reports a smart system for detecting iPSC-derived cancer stem cells by using conditional generative adversarial networks. This system with artificial intelligence (AI) accepts a normal image from a microscope and transforms it into a corresponding fluorescent-marked fake image. The AI system learns 10,221 sets of paired pictures as input. Consequently, the system’s performance shows that the correlation between true fluorescent-marked images and fake fluorescent-marked images is at most 0.80. This suggests the fundamental validity and feasibility of our proposed system. Moreover, this research opens a new way for AI-based drug discovery in the process of iPSC-derived cancer stem cell detection.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference24 articles.

1. R. Yu, X. Xu, and Z. Wang, “Influence of Object Detection in Deep Learning,” J. Adv. Comput. Intell. Intell. Inform., Vol.22, No.5, pp. 683-688, 2018.

2. W. Liu, Y. Yang, and L. Wei, “Weather Recognition of Street Scene Based on Sparse Deep Neural Networks,” J. Adv. Comput. Intell. Intell. Inform., Vol.21, No.3, pp. 403-408, 2017.

3. M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv preprint arXiv: 1411.1784, 2014.

4. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” arXiv: 1406.2661 [stat.ML], 2014.

5. A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,” arXiv preprint arXiv: 1511.06434, 2015.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3