Reproducing Polynomial Kernel Extreme Learning Machine

Author:

Li Yibo,Liu Chao,Zhang Senyue,Tan Wenan,Ding Yanyan, ,

Abstract

Conventional kernel support vector machine (KSVM) has the problem of slow training speed, and single kernel extreme learning machine (KELM) also has some performance limitations, for which this paper proposes a new combined KELM model that build by the polynomial kernel and reproducing kernel on Sobolev Hilbert space. This model combines the advantages of global and local kernel function and has fast training speed. At the same time, an efficient optimization algorithm called cuckoo search algorithm is adopted to avoid blindness and inaccuracy in parameter selection. Experiments were performed on bi-spiral benchmark dataset, Banana dataset, as well as a number of classification and regression datasets from the UCI benchmark repository illustrate the feasibility of the proposed model. It achieves the better robustness and generalization performance when compared to other conventional KELM and KSVM, which demonstrates its effectiveness and usefulness.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference24 articles.

1. G. B. Huang, X. Ding, and H. Zhou, “Optimization method based extreme learning machine for classification,” Neurocomputing, Vol.74, pp. 155-163, 2010.

2. G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: a new learning scheme of feed forward neural networks,” Proc. of Int. Joint Conf. on Neural Networks (IJCNN2004), pp. 985-990, 2004.

3. G. B. Huang and H. Zhou, “Extreme learning machine for regression and multiclass classification,” IEEE Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol.42, No.2, pp. 513-529, 2012.

4. L. Zhang and D. Zhang, “Evolutionary Cost-Sensitive Extreme Learning Machine,” IEEE Trans. on Neural Networks & Learning Systems, Vol.PP, Issue 99, pp. 1-16, 2016.

5. C. D. Li, Y. S. Lv, J. Q. Yi, and G. Q. Zhang, “Pruned Fast Learning Fuzzy Approach for Data-Driven Traffic Flow Prediction,” J. Adv. Comput. Intell. Intell. Inform, Vol.20, No.7, pp. 1181-1191, 2016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combination of Improved OGY and Guiding Orbit Method for Chaos Control;Journal of Advanced Computational Intelligence and Intelligent Informatics;2019-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3