Author:
Li Chengdong, ,Lv Yisheng,Yi Jianqiang,Zhang Guiqing,
Abstract
Traffic flow prediction plays an important role in intelligent transportation systems. With the rapid growth of traffic flow data, fast and accurate traffic flow prediction methods are now required. In this paper, we propose a novel fast learning data-driven fuzzy approach for the traffic flow prediction problem. In the proposed approach, to achieve fast learning, an extreme learning machine is utilized to optimize the consequent parameters of the fuzzy rules. Further, a fuzzy rule pruning strategy that involves measuring the firing levels of the fuzzy rules is presented to obtain reduced fuzzy inference systems. To evaluate the performance of the proposed approach, it was experimentally applied to traffic flow prediction and its results compared with those of widely used methods. The experimental results verify that the proposed approach can achieve satisfactory performance. The comparisons show that the proposed approach can obtain better (sometimes similar) performances, but with a simpler structure, fewer parameters, and much faster learning speed than the other methods.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data driven hybrid fuzzy model for short-term traffic flow prediction;Journal of Intelligent & Fuzzy Systems;2018-12-24
2. Reproducing Polynomial Kernel Extreme Learning Machine;Journal of Advanced Computational Intelligence and Intelligent Informatics;2017-09-20