A Heterogeneous Ensemble Learning Voting Method for Fatigue Detection in Daily Activities

Author:

Wang Lulu,Huang Zhiwu,Hao Shuai,Cheng Yijun,Yang Yingze, ,

Abstract

Lower extremity fatigue is a risk factor for falls and injuries. This paper proposes a machine learning system to detect fatigue states, which considers the different influences of common daily activities on physical health. A wearable inertial unit is devised for gait data acquisition. The collected data are reorganized into nine data subsets for dimension reduction, and then preprocessed via gait cycle division, visualization, and oversampling. Then, a heterogeneous ensemble learning voting method is employed to train nine classifiers. The results indicate that the method reaches an accuracy of 92%, which is obtained by the plurality voting method using data subset prediction classes. Comparing the results shows that the final result is more accurate than the results of each individual data subset, and the heterogeneous voting method is advantageous when balancing out individual weaknesses of a set of equally well-performing models.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Approach for Egg Parasite Classification Based on Ensemble Deep Learning;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-11-20

2. Fatigue Monitoring Through Wearables: A State-of-the-Art Review;Frontiers in Physiology;2021-12-15

3. Classification of Fatigue Phases in Healthy and Diabetic Adults Using Wearable Sensor;Sensors;2020-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3