Classification of Fatigue Phases in Healthy and Diabetic Adults Using Wearable Sensor

Author:

Aljihmani Lilia,Kerdjidj Oussama,Zhu Yibo,Mehta Ranjana K.ORCID,Erraguntla MadhavORCID,Sasangohar FarzanORCID,Qaraqe Khalid

Abstract

Fatigue is defined as “a loss of force-generating capacity” in a muscle that can intensify tremor. Tremor quantification can facilitate early detection of fatigue onset so that preventative or corrective controls can be taken to minimize work-related injuries and improve the performance of tasks that require high-levels of accuracy. We focused on developing a system that recognizes and classifies voluntary effort and detects phases of fatigue. The experiment was designed to extract and evaluate hand-tremor data during the performance of both rest and effort tasks. The data were collected from the wrist and finger of the participant’s dominant hand. To investigate tremor, time, frequency domain features were extracted from the accelerometer signal for segments of 45 and 90 samples/window. Analysis using advanced signal processing and machine-learning techniques such as decision tree, k-nearest neighbor, support vector machine, and ensemble classifiers were applied to discover models to classify rest and effort tasks and the phases of fatigue. Evaluation of the classifier’s performance was assessed based on various metrics using 5-fold cross-validation. The recognition of rest and effort tasks using an ensemble classifier based on the random subspace and window length of 45 samples was deemed to be the most accurate (96.1%). The highest accuracy (~98%) that distinguished between early and late fatigue phases was achieved using the same classifier and window length.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hypoglycemia and hyperglycemia detection using ECG: A multi-threshold based personalized fusion model;Biomedical Signal Processing and Control;2024-10

2. Identifying High-Risk Patients for Diabetes using Machine Learning;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

3. Fiber-Optic and IMU Sensors for Muscle Fatigue Detection in Work Settings;2023 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC);2023-11-05

4. Hypoglycemia Detection Using Hand Tremors: Home Study of Patients With Type 1 Diabetes;JMIR Diabetes;2023-04-19

5. Machine Learning in Tremor Analysis: Critique and Directions;Movement Disorders;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3